If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4y^2=10y-5
We move all terms to the left:
4y^2-(10y-5)=0
We get rid of parentheses
4y^2-10y+5=0
a = 4; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·4·5
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{5}}{2*4}=\frac{10-2\sqrt{5}}{8} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{5}}{2*4}=\frac{10+2\sqrt{5}}{8} $
| 5/2c=8/12 | | 32-12=z | | 6x+57=180 | | 13(10x+42)=-1274 | | 47x=27 | | -5n-3=-2n+9 | | 27x/3=6 | | 3b-3-2b+4=0 | | -2(x-9)+3=5 | | 3x=-5=24 | | w–12=–14 | | a+7=9,a | | 2(3x-4)-4x=26 | | 5(m+3)-2M=M+9 | | 2k-49=9k | | -(3x-4)-2x=24 | | (8x+20+(11x-31)=180 | | 0.4x^2=6 | | 5b-35=0 | | x+2X30x=180 | | y/4=y/4 | | 5d+4(d-1)=2d+24 | | 37.5x=10 | | .5(8x-4)+3x=54 | | -9x+8=32 | | x-33/8=4 | | 20=k+7,k | | (4x-3)^2=64 | | 2/5x^2=6 | | 5=37.5x | | 6(n-1)=3(n+3) | | (8x+20)+(11x-31)=1803 |